Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 138, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658823

ABSTRACT

BACKGROUND: Co-infection with other pathogens in coronavirus disease 2019 (COVID-19) patients exacerbates disease severity and impacts patient prognosis. Clarifying the exact pathogens co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is premise of the precise treatment for COVID-19 patients. METHODS: Sputum samples were collected from 17 patients in the COVID-19 positive group and 18 patients in the COVID-19 negative group. DNA extraction was performed to obtain the total DNA. Sequencing analysis using 16S and ITS rRNA gene was carried out to analyze the composition of bacterial and fungal communities. Meanwhile, all the samples were inoculated for culture. RESULTS: We did not observe significant differences in bacterial composition between the COVID-19 positive and negative groups. However, a significantly higher abundance of Candida albicans was observed in the upper respiratory tract samples from the COVID-19 positive group compared to the COVID-19 negative group. Moreover, the Candida albicans strains isolated from COVID-19 positive group exhibited impaired secretion of aspartyl proteinases. CONCLUSION: COVID-19 positive patients demonstrate a notable increase in the abundance of Candida albicans, along with a decrease in the levels of aspartyl proteinases, indicating the alteration of microbiota composition of upper respiratory tract.


Subject(s)
Bacteria , COVID-19 , Candida albicans , Microbiota , Respiratory System , SARS-CoV-2 , Sputum , Humans , COVID-19/microbiology , COVID-19/virology , Microbiota/genetics , Male , Candida albicans/isolation & purification , Candida albicans/genetics , Female , Sputum/microbiology , Sputum/virology , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Respiratory System/microbiology , Respiratory System/virology , Aged , RNA, Ribosomal, 16S/genetics , Adult , Coinfection/microbiology , Coinfection/virology
2.
Emerg Microbes Infect ; : 2290840, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044873

ABSTRACT

OXA-232 is one of the most common OXA-48-like carbapenemase derivatives and is widely disseminated in nosocomial settings across countries. The blaOXA-232 gene is located on a 6-kb non-conjugative ColKP3-type plasmid, while the dissemination of blaOXA-232 into different Enterobacterales species and the polyclonal dissemination of OXA-232-producing K. pneumoniae revealed the horizontal transfer of blaOXA-232. However, it's still unclear how this non-conjugative ColKP3 plasmid could facilitate the mobilization of blaOXA-232. Here, we observed the in vivo intraspecies transfer of blaOXA-232 during a nosocomial outbreak of OXA-232-producing K. pneumoniae. We demonstrated the presence of ColKP3 OXA-232 plasmid in the outer membrane vesicles (OMVs) derived from clinical isolates, and OMVs could facilitate the horizontal transfer of blaOXA-232 among Enterobacterales. In contrast, for the most prevalent carbapenemase genes, including blaKPC-2 and blaNDM-1, though the presence of carbapenemase genes and plasmid backbones in the vesicular lumen was observed, OMVs couldn't promote effective transformation, probably due to the low copy number of plasmids in clinical isolates and the low number of plasmids loaded into vesicles. Conjugation assay revealed that the epidemic IncX3 NDM-1 and IncFII(pHN7A8)/IncR KPC-2 plasmids were conjugative and could be horizontally transferred via independent conjugation or with the help of a co-existent conjugative plasmid. For the large-size and low-copy number conjugative plasmids carrying carbapenemase genes, OMVs-mediated gene exchange may only serve as an alternative pathway for horizontal transfer. In conclusion, diverse mobilization strategies were employed by plasmids harboring carbapenemase genes, and plasmids display a proper choice of mobility pathway due to their individual properties.

3.
Emerg Microbes Infect ; 12(2): 2276335, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37882148

ABSTRACT

Diabetic foot infections are a common complication of diabetes. Staphylococcus aureus is frequently isolated from diabetic foot infections and commonly colonizes human nares. According to the study, the nasal microbiome analysis revealed that diabetic patients had a significantly altered nasal microbial composition and diversity. Typically, the fasting blood glucose (FBG) level had an impact on the abundance and sequence type (ST) of S. aureus in diabetic patients. We observed that highly virulent S. aureus ST7 strains were more frequently colonized in diabetic patients, especially those with poorly controlled FBG, while ST59 was dominant in healthy individuals. S. aureus ST7 strains were more resistant to human antimicrobial peptides and formed stronger biofilms than ST59 strains. Critically, S. aureus ST7 strains displayed higher virulence compared to ST59 strains in vivo. The dominance of S. aureus ST7 strains in hyperglycemic environment is due to the higher activity of the SaeRS two-component system (TCS). S. aureus ST7 strains outcompeted ST59 both in vitro, and in nasal colonization model in diabetic mice, which was abolished by the deletion of the SaeRS TCS. Our data indicated that highly virulent S. aureus strains preferentially colonize diabetic patients with poorly controlled FBG through SaeRS TCS. Detection of S. aureus colonization and elimination of colonizing S. aureus are critical in the care of diabetic patients with high FBG.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Foot , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Animals , Mice , Staphylococcus aureus , Diabetes Mellitus, Experimental/complications , Nose , Nasal Cavity
4.
BMC Microbiol ; 23(1): 130, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37183254

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is an inflammatory skin condition distinguished by an activated Th2 immune response. The local skin microbial dysbiosis is a contributing factor to the development of AD. The pathogenic coagulase-positive Staphylococcus aureus is the primary species responsible for the progression of AD. Even though Staphylococcus pseudintermedius is an animal-origin pathogen, it is increasingly becoming a source of concern in human diseases. As another coagulase-positive Staphylococci, it is crucial to pay more attention to S. pseudintermedius isolated from the lesion site. RESULTS: In our investigation, we presented a case of cheilitis in a patient with atopic dermatitis (AD). We utilized culture and next-generation genomic sequencing (NGS) to identify the bacteria present on the skin swabs taken from the lip sites both prior to and following treatment. Our findings indicated that the predominant bacteria colonizing the lesion site of AD were S. pseudintermedius and S. aureus, both of which were eradicated after treatment. The Multi-locus sequence typing (MLST) of S. pseudintermedius and S. aureus demonstrated coordinated antibiotic susceptibility, with ST2384 and ST22 being the respective types. Although the skin abscess area resulting from S. pseudintermedius infection was significantly smaller than that caused by S. aureus in mice, the expression of cytokines interleukin-4 (IL-4) and interleukin-5 (IL-5) were significantly higher in the S. pseudintermedius-infected mice. CONCLUSIONS: The S. pseudintermedius strain isolated from the lesion site of the AD patient exhibited a higher expression of IL-4 and IL-5 when colonized on mouse skin, as compared to S. aureus. This observation confirms that S. pseudintermedius can effectively induce the Th2 response in vivo. Our findings suggest that animal-origin S. pseudintermedius may play a role in the development of AD when colonized on the skin, emphasizing the importance of taking preventive measures when in contact with animals.


Subject(s)
Cheilitis , Coinfection , Dermatitis, Atopic , Staphylococcal Infections , Humans , Animals , Mice , Staphylococcus aureus/physiology , Dermatitis, Atopic/complications , Dermatitis, Atopic/microbiology , Interleukin-4 , Interleukin-5 , Multilocus Sequence Typing , Cheilitis/complications , Cheilitis/pathology , Coagulase , Staphylococcal Infections/complications , Skin/microbiology
5.
ACS Omega ; 8(20): 17712-17718, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37251147

ABSTRACT

Staphylococcus aureus is a high-virulent Gram-positive pathogen that is responsible for a serious of diseases. The emergence of antibiotic-resistant S. aureus poses a significant challenge in terms of treatment. The recent research on the human microbiome suggested that the application of commensal bacteria is a new strategy for combating pathogenic infections. Staphylococcus epidermidis, one of the most abundant species in the nasal microbiome, is able to inhibit the colonization of S. aureus. However, during bacterial competition, S. aureus undergoes evolutionary changes to adapt to the diverse environment. Our study has demonstrated that the nasal colonized S. epidermidis possesses the ability to inhibit the hemolytic activity of S. aureus. Moreover, we deciphered another layer of mechanism to inhibit S. aureus colonization by S. epidermidis. The active component present in the cell-free culture of S. epidermidis was found to significantly reduce the hemolytic activity of S. aureus in SaeRS- and Agr-dependent manner. Specifically, the hemolytic inhibition on the S. aureus Agr-I type by S. epidermidis is primarily dependent on the SaeRS two-component system. The active component is characterized as a small molecule that is heat sensitive and protease resistant. Critically, S. epidermidis significantly inhibit the virulence of S. aureus in a mouse skin abscess model, suggesting that the active compound could potentially be used as a therapeutic agent for managing S. aureus infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...